The Potential Liver, Brain, and Embryo Toxicity of Titanium Dioxide Nanoparticles on Mice

نویسندگان

  • Xiaochuan Jia
  • Shuo Wang
  • Lei Zhou
  • Li Sun
چکیده

Nanoscale titanium dioxide (nano-TiO2) has been widely used in industry and medicine. However, the safety of nano-TiO2 exposure remains unclear. In this study, we evaluated the liver, brain, and embryo toxicity and the underlying mechanism of nano-TiO2 using mice models. The results showed that titanium was distributed to and accumulated in the heart, brain, spleen, lung, and kidney of mice after intraperitoneal (i.p.) nano-TiO2 exposure, in a dose-dependent manner. The organ/body weight ratios of the heart, spleen, and kidney were significantly increased, and those of the brain and lung were decreased. High doses of nano-TiO2 significantly damaged the functions of liver and kidney and glucose and lipid metabolism, as showed in the blood biochemistry tests. Nano-TiO2 caused damages in mitochondria and apoptosis of hepatocytes, generation of reactive oxygen species, and expression disorders of protective genes in the liver of mice. We found ruptured and cracked nerve cells and inflammatory cell infiltration in the brain. We also found that the activities of constitutive nitric oxide synthases (cNOS), inducible NOS (iNOS), and acetylcholinesterase, and the levels of nitrous oxide and glutamic acid were changed in the brain after nano-TiO2 exposure. Ex vivo mouse embryo models exhibited developmental and genetic toxicity after high doses of nano-TiO2. The size of nano-TiO2 particles may affect toxicity, larger particles producing higher toxicity. In summary, nano-TiO2 exhibited toxicity in multiple organs in mice after exposure through i.p. injection and gavage. Our study may provide data for the assessment of the risk of nano-TiO2 exposure on human health.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی اثرات سمیتی نانوذرات اکسید روی و دی‌اکسید تیتانیوم بر روی برخی از آنزیم‌های کبدی موش سفید آزمایشگاهی نر

Background and Objectives: The advancement of nanotechnology has made it more important to study the destructive effects of nano-materials on organisms. Titanium dioxide and zinc oxide nanoparticles can enter the body in different ways and cause damage to the liver and other organs of the body. The purpose of this study was to evaluate the effects of zinc oxide and titanium dioxide nanoparticle...

متن کامل

Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical changes in adult male Wistar rats

Objective(s): Titanium dioxide (TiO2) nanoparticles (NPs) are widely used in commercial food additives and cosmetics worldwide. Uptake of these nanoparticulate into humans by different routes and may exhibit potential side effects, lags behind the rapid development of nanotechnology. Thus, the present study designed to evaluate the toxic effect of mixed rutile and anatase TiO2 NPs on serum bioc...

متن کامل

Toxicity of Manganese Titanate on Rat Vital Organ Mitochondria

The TiO2, which is a main material in the field of photocatalytic reactions, includes rutile and anatase phase. Titanium dioxide has possessed notice due to its promising applications in the environmental photocatalytic degradation of pollutants of organic compound in waste water and utilization of solar energy. The nanosized manganese titanate (pyrophanite) MnTiO3 was collected by oxidation of...

متن کامل

Toxicity of Manganese Titanate on Rat Vital Organ Mitochondria

The TiO2, which is a main material in the field of photocatalytic reactions, includes rutile and anatase phase. Titanium dioxide has possessed notice due to its promising applications in the environmental photocatalytic degradation of pollutants of organic compound in waste water and utilization of solar energy. The nanosized manganese titanate (pyrophanite) MnTiO3 was collected by oxidation of...

متن کامل

Acute toxicity of titanium dioxide nanoparticles in Daphnia magna and Pontogammarus maeoticus

Titanium dioxide nanoparticles (nTiO2) are the world's second most widely consumed nanomaterial and large quantities of this material enters the aquatic ecosystem annually. Therefore, understanding the effects of nTiO2 on aquatic organisms is very important. The present study used Daphnia magna as a model freshwater organism and Pontogammarus maeoticus as a brackish water organism to evaluate s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017